
In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

SatView™ Data I/O Device Driver Development
All information is subject to change without notice and does not represent a commitment on the part of .

Release 1.05 (May 2015)

Table of Contents
1. Introduction
2. Interface Architecture
3. Abstract Interface Classes
4. Software Prerequisites
5. Samples

Appendix

Table of Figures

Figure Description

Figure 2.1. SatView™ Interfaces (exposed to third-party developers)

Document Change Log

Issue Revision Date Affected Reason for change

1 1 March 2011 All New document
1 2 November 2012 3.1.2. Added ‘IsLocal() CONST’ function

1 3 May 2013 3.1.2. Added ‘ReadOnly’ argument to the
‘Configure(…)’ function

1 4 March 2014 3.1.2. Added ‘nAllowedTypes’ argument to
the ‘Configure(…)’ function

1 5 May 2015 3.1.2. Modified the prototypes for the
‘Initialize(…)’, ‘Send(…)’ and

‘Receive(…)’ procedures

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

1. Introduction
SatView™ exposes important interfaces to third-party developers which allow an effective
customization of the product.

The following areas can be subject of such an extension:

 Data I/O
Writing data I/O device drivers can make SatView™ compatible to any available TM/TC
front-end equipment.

 Database
Multiple database standards can be supported by developing database drivers which
make a migration of SatView™ to new missions possible in a flexible way.

 Automation
Offers an interface to all automation services of SatView™; ideal for the integration into
complex and highly automated ground segments.

This document focuses on the development of data I/O device drivers.

2. Interface Architecture
By exposing important interfaces to third-party developers customers can adapt SatView™ to
their current environment in a flexible way:

Figure 2.1. – SatView™ Interfaces

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

The work includes the development of an interface driver in form of a Dynamic Link Library
(DLL) for the Data I/O and the database; the automation is performed though XML-
formatted requests via TCP/IP.

3. Abstract Interface Classes
The interface specification is implemented via C++ abstract base classes exposing the
interface through virtual member functions. This approach has the advantage that SatView™
does not have to care about any device specifics because they are encapsulated by the DLL.

3.1. The CIODevice Abstract Base Class
Any data I/O device driver to be written for SatView™ must be derived from the base class
called CIODevice.
This chapter hereinafter explains the various member functions, types and flags involved
with this class.

3.1.1. Non-virtual Functions
The functions listed here do not need to be implemented in any derived class. They provide
the basic functionality of the data I/O device driver.

BOOL Open(LPCTSTR pszName,LPCTSTR pszDeviceBrand)

Opens the data I/O device driver.

Parameters:
pszName

Specifies the location of the data I/O device driver DLL.
pszDeviceBrand

Identifies the brand of the device to be opened.

 Note:
Some drivers support multiple types of devices within the same DLL and this
argument specifies which one to open.

Return Value:
Indicates if the data I/O device driver DLL could be loaded and the specified device was
opened successfully.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

BOOL Open()

Re-opens the data I/O device driver.

 Note:
The function can only be used if the data I/O device driver was successfully opened before.

Return Value:
Indicates if the data I/O device driver was re-opened successfully.

BOOL IsOpen() CONST

Checks if the data I/O device driver is already open.

Return Value:
Returns TRUE if the data I/O device driver is currently open; FALSE if not.

VOID Close()

Closes the data I/O device driver.

Return Value:
None

VOID SetDeviceBrand(LPCTSTR pszDeviceBrand)

Sets the brand name for the device currently open.

 Note:
A data I/O device driver can support multiple devices of a certain brand differentiated by a
unique name.

Parameters:
pszDeviceBrand

Contains the brand name to be set for the device.

Return Value:
None

CString GetDeviceBrand() CONST

Gets the brand name for the current device.

Return Value:
Returns the brand name of the device as a string.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

VOID SetDeviceName(LPCTSTR pszDeviceName)

Sets the name for the device currently open.

 Note:
A data I/O device driver can support multiple devices of a certain brand.

Parameters:
pszDeviceName

Contains the name to be set for the currently open device.

Return Value:
None

CString GetDeviceName() CONST

Gets the name for the current device.

Return Value:
Returns the device name as a string.

VOID SetDeviceModule(LPCTSTR pszDeviceModule)

Sets the file path of the data I/O device driver DLL.

Parameters:
pszDeviceModule

Contains the path name of the DLL.

Return Value:
None

CString GetDeviceModule() CONST

Gets the file path of the data I/O device driver DLL.

Return Value:
Returns the path name of the DLL as a string.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

VOID SetDeviceProperties(CONST CByteArray &nDeviceData)

Associates device specific data with the device currently open.

Parameters:
nDeviceData

Contains the device specific serialized data.

Return Value:
None

INT GetDeviceProperties(CByteArray &nDeviceData) CONST

Gets the device specific data of the current device.

Parameters:
nDeviceData

Contains the device specific serialized data.

Return Value:
Returns the size (in bytes) of the returned data.

VOID SetDeviceSecurity(CONST CStringArray &szUsers,

CONST CUIntArray &nCodes,

CONST CTimeKeyArray &tStartTimes,

CONST CTimeKeyArray &tStopTimes)

Specifies the security policy for the device currently open.

Parameters:
szUsers

Contains a list of clients for which an access policy is specified.

 Note:
Each of these entries must consist of the client display name and IP address
separated by an end-of-line character.

nCodes

Specifies the access policy for each of the clients:

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

Security Policy Table:

Policy Description

IODEVICE_SECURITY_UNLIMITEDACCESS A client receives unlimited access to
the services of the device.

IODEVICE_SECURITY_RESTRICTEDACCESS Any access to the device is restricted
to the time between tStartTime and
tStopTime for the client.

IODEVICE_SECURITY_DENIEDACCESS The client cannot make use of the
device’s services.

IODEVICE_SECURITY_AUDITACCESS Requests an event message to be
issued whenever a client logs-in or
logs-out.

 Note:
This flag can be combined with one
of the above ones.

tStartTimes

Contains a list of access start times.

 Note:
This argument is only applicable when the
IODEVICE_SECURITY_RESTRICTEDACCESS policy is specified. Use 0 in all other
cases.

tStopTimes

Contains a list of access stop times.

 Note:
This argument is only applicable when the
IODEVICE_SECURITY_RESTRICTEDACCESS policy is specified. Use 0 in all other
cases.

Return Value:
None

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

INT GetDeviceSecurity(CStringArray &szUsers,

CUIntArray &nCodes,

CTimeKeyArray &tStartTimes,

CTimeKeyArray &tStopTimes) CONST

Retrieves the security policy for the current device.

Parameters:
szUsers

Contains a list of clients for which an access policy is specified.

 Notes:
 Each of these entries consists of the client display name and IP address separated

by an end-of-line character.

 An empty entry combined with the IODEVICE_SECURITY_UNLIMITEDACCESS
policy indicates that any client not part of the list receives full access to the device.

nCodes

Specifies the access policy for each of the clients.

 Notes:
See above for all options available.

tStartTimes

Contains a list of access start times.

 Note:
This argument is only applicable when the
IODEVICE_SECURITY_RESTRICTEDACCESS policy is specified. Use 0 in all other
cases.

tStopTimes

Contains a list of access stop times.

 Note:
This argument is only applicable when the
IODEVICE_SECURITY_RESTRICTEDACCESS policy is specified. Use 0 in all other
cases.

Return Value:
Returns the number of entries in the device security list.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

BOOL MonitorDeviceLogins(UINT nMask=0,

IODEVICELOGINSPROCEDURE pLoginProcedure=NULL,

LPVOID pData=NULL)

Installs a callback procedure for all client activities on the current device.

Parameters:
nMask

Specifies the type of activity to be monitored:

Activity Description

IODEVICE_LOGIN_SUCCESS The supplied callback procedure will be
called whenever a client logs-in.

IODEVICE_LOGIN_FAILURE All denied log-ins will be notified.
IODEVICE_LOGOUT_SUCCESS A call to the supplied procedure will always

take place when a client logs-out.
IODEVICE_LOGINOUT_AUDIT Indicates that an event message should be

issued.
0 Disables the client activity monitoring.

 Note:
All activity flags (except 0) can be combined with each other.

pLoginProcedure

Specifies the callback procedure to be called for all specified client activities. The
supplied procedure must conform to the following syntax:
VOID (CALLBACK *)(UINT nFlags,LPCTSTR pszClient,LPVOID pData);

pData

Contains a pointer to the CIODevice-derived class calling the pLoginProcedure
procedure.

Return Value:
Returns TRUE if the client activity can be monitored; FALSE if not.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

BOOL MonitorDeviceDataStream(UINT nMask=0,

CONST CTimeSpan &tInterval=0,

IODEVICEDATASTREAMPROCEDURE pDataStreamProcedure=NULL,

LPVOID pData=NULL)

Installs a callback procedure for all data stream events on the current device.
Parameters:
nMask

Specifies the type of data stream events to be monitored:

Event Description

IODEVICE_DATASTREAM_DROP The supplied callback procedure will
be called whenever the device detects
a drop in the data stream.

 Note:
A gap in the data stream is
considered as such when no data is
received for a period longer than
specified by tInterval.

IODEVICE_DATASTREAM_RECONNECTED A notification will be performed when
the data stream is resumed after a
drop.

IODEVICE_DATASTREAM_DELAYED Clients of the data I/O device may
temporarily be overloaded; a
situation which can be signaled if
desired.

 Note:
A delay is defined by the difference
between the data stream time and
the system time and specified by
tInterval.

IODEVICE_DATASTREAM_BACKINTIME Requests a notification whenever a
period of delayed data delivery is
terminated.

0 Disables the data stream event
monitoring.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

tInterval

Specifies a time interval (in seconds).

 Note:
The argument must be set to a value > 0 s when the
IODEVICE_DATASTREAM_DROP or IODEVICE_DATASTREAM_DELAYED notification
events are requested. Call the MonitorDeviceDataStream procedure twice if

both callbacks should be installed.
pDataStreamProcedure

Specifies the callback procedure to be called for all specified data stream events.
The supplied procedure must conform to the following syntax:
VOID (CALLBACK *)(UINT nFlags,TIMEKEY tInterval,LPVOID pData)

pData

Contains a pointer to the CIODevice-derived class calling the

pDataStreamProcedure procedure.

Return Value:
Returns TRUE if the data stream events can be monitored; FALSE if not.

BOOL MonitorDeviceDataBuffers(HANDLE &hInBuffer,

HANDLE &hOutBuffer)

Sets the event handles for the input and output buffers of the device.

 Note:
The supplied handles get signaled when data is available in the corresponding buffers.
Using handles is strongly recommended because it is more efficient than performing
polling.

Return Value:
Returns TRUE if the handles could be set; FALSE if not.

BOOL ShowDeviceStatus(LPCTSTR pszStatus,UINT nStatus)

Shows the current status of the device.
Parameters:
pszStatus

Specifies the current status of the device.

 Note:
This status indication text is device specific should not be longer than 16 characters.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

nStatus

Specifies the current status of the device in a numerical form:

Status Description

IODEVICE_STATUS_GOOD The device is in a healthy state.
IODEVICE_STATUS_WARNING A warning condition occurred.
IODEVICE_STATUS_ERROR A major failure has been encountered.
IODEVICE_STATUS_CONNECTED The device is physically connected.
IODEVICE_STATUS_NOTCONNECTED No connection has been established or

is disconnected.
IODEVICE_STATUS_ONLINE The device is scheduled to be in-service.
IODEVICE_STATUS_OFFLINE No services should be provided by the

device.

 Note:

 The numerical status should reflect the one indicated by pszStatus as close as
possible

 The status IODEVICE_STATUS_GOOD is mutual exclusive with
IODEVICE_STATUS_WARNING and IODEVICE_STATUS_ERROR

 IODEVICE_STATUS_CONNECTED cannot be used with
IODEVICE_STATUS_NOTCONNECTED

 IODEVICE_STATUS_ONLINE and IODEVICE_STATUS_OFFLINE cannot be used
together

Return Value:
Returns TRUE if the device status could be set; FALSE if not.

BOOL ShowDeviceMessage(LPCTSTR pszMessage,

UINT nMessageType=IODEVICE_MESSAGETYPE_ERROR)

Shows a device specific message.
Parameters:
pszMessage

Contains the message.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

nMessageType

Specifies the severity of the message:

Message Severity Table:

Severity Description

IODEVICE_MESSAGETYPE_INFORMATIONAL The message has an informational
character.

IODEVICE_MESSAGETYPE_SUCCESS A successful event is reported by
the message.

IODEVICE_MESSAGETYPE_WARNING The message contains a warning.
IODEVICE_MESSAGETYPE_ERROR An error is reported by the

message.

Return Value:
Returns TRUE if the message could be shown; FALSE if not.

CIODevice *GetIODevice() CONST

Returns a pointer to the device currently open.

Return Value:
Returns the pointer to the CIODevice-derived class.

3.1.2. Virtual Functions
The virtual functions make up the actual interface between the physical device and
SatView™. They have to be implemented.

virtual BOOL Start()

Starts the operation of the I/O device driver.

Return Value:
Returns TRUE if the I/O device driver could be started successfully; FALSE if not.

virtual BOOL Suspend()

Suspends the operation of the I/O device driver.

Return Value:
Returns TRUE if the I/O device driver could be suspended; FALSE if not.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

virtual BOOL IsSuspended() CONST

Checks if the I/O device driver is in a suspended state.

Return Value:
Returns TRUE if the I/O device driver is in a suspended state; FALSE if not.

virtual BOOL Resume()

Resumes the operation of the I/O device driver when in a suspended state.

Return Value:
Returns TRUE if the I/O device driver could be resumed successfully; FALSE if not.

virtual BOOL Stop()

Stops the operation of the I/O device driver.

Return Value:
Returns TRUE if the I/O device driver could be stopped; FALSE if not.

virtual BOOL Configure(CWnd *pParentWnd=NULL,UINT

nAllowedTypes=IODEVICE_TYPE_SERVER |

IODEVICE_TYPE_CLIENT,BOOL bReadOnly=FALSE)

Configures the I/O device driver.
Parameters:
pParentWnd

Specifies the parental window of the I/O device driver configuration dialog box.

 Note:
Specifying NULL as argument value uses the desktop as parent.

nAllowedTypes

Specifies the type of the device to be configured.

 Note:
Specify either the IODEVICE_TYPE_CLIENT flag or both.

bReadOnly

Specifies if the I/O device driver configuration dialog box is to be used in read-only
(browse) mode.

Return Value:
Returns TRUE if the I/O device driver configuration was completed by pushing the OK
button; FALSE if not.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

virtual BOOL Initialize(UINT nFlags=IODEVICE_TYPE_CLIENT |

IODEVICE_SERVICE_TM | IODEVICE_DATASERVICE_SOURCEPACKETS,

CONST CTimeSpan &tDataDrop=0,

CONST CTimeSpan &tDataDelay=0,

IODEVICESTATUSPROCEDURE pStatusProcedure=NULL,

IODEVICEDATASTATUSPROCEDURE pDataStatusProcedure=NULL,

IODEVICEMESSAGEPROCEDURE pMessageProcedure=NULL)

Initializes the I/O device driver and prepares it for operation.
Parameters:
nFlags

Specifies the type of I/O device driver requested including the desired data service:

Flags Description

IODEVICE_TYPE_SERVER The I/O device driver should act as
a server.

 Note:
This mode may not be
implemented by some drivers.

IODEVICE_TYPE_CLIENT The I/O device driver should
implement client functionality.

IODEVICE_SERVICE_TM The service is requested to handle
telemetry data.

IODEVICE_SERVICE_TC The service is requested to handle
telecommand data.

IODEVICE_DATASERVICE_RAW The data transferred should be in a
raw (serialized) format.

IODEVICE_DATASERVICE_TRANSFERFRAMES Transfer frames are requested as
transmission format.

 Note:
See the CTMTransferFrame &

CTCFransferFrame classes for
more information.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

I/O Device Driver Capability Flags (continued)

IODEVICE_DATASERVICE_SOURCEPACKETS The data exchange should take
place on the basis of source
packets.

 Note:
See the CTMUnit & CTCUnit
classes for more information.

IODEVICE_PROTOCOL_PFLP The Packet Front-End Link Protocol
(PFLP) should be used for the data
exchange.

 Note:
If this flag is not specified, any
other protocol implemented by the
I/O device driver will be used.

 Note:

 IODEVICE_TYPE_SERVER and IODEVICE_TYPE_CLIENT are mutual exclusive flags
 The flags IODEVICE_SERVICE_TM and IODEVICE_SERVICE_TC cannot be used

together

 Specify either IODEVICE_DATASERVICE_RAW,
IODEVICE_DATASERVICE_TRANSFERFRAMES or
IODEVICE_DATASERVICE_SOURCEPACKETS as the requested data service

 The IODEVICE_PROTOCOL_PFLP flag is required only if the use of the Packet
Front-End Protocol (PFLP) is mandatory

tDataDrop

Specifies the minimum time interval with no data transfer activity considered to be a
drop.

 Note:
This argument is used when the IODEVICE_SERVICE_TM flag is specified; it may be
0 for any other service.

tDataDelay

Specifies the maximum time delay allowed (in seconds) for out-of-band data (e.g.
high-priority data).

 Note:
This argument is used when the IODEVICE_SERVICE_TM flag is specified; it may be
0 for any other service.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

pStatusProcedure

Supplies the address of a device status indication procedure to be called when the
status changes.
The supplied procedure must conform to the following syntax:
VOID (CALLBACK *)(LPCTSTR pszStatus,UINT nStatus)

 Note:
Consult the ShowDeviceStatus function for the possible argument values.

pDataStatusProcedure

Specifies the callback procedure to be called for all data status events.
The supplied procedure must conform to the following syntax:
VOID (CALLBACK *)(INT nDataID,UINT nStatus,BOOL bSuccess)

The variable nDataID identifies the data to which the provided status applies. It is
identical to the return value of the Send(…) procedure.

The values for nStatus can be (a combination) of:

Status Description

IODEVICE_DATASTATUS_SENT

The data identified by nDataID was sent
successfully to the destination device (if
bSuccess=TRUE).

IODEVICE_DATASTATUS_PROCESSED

The data identified by nDataID was
processed successfully at the destination
device (if bSuccess=TRUE).

pMessageProcedure

Supplies the address of a procedure handling (i.e. showing) the device messages
issued by the I/O device driver.
The supplied procedure must conform to the following syntax:
VOID (CALLBACK *)(LPCTSTR pszMessage,UINT nMessageType)

 Note:
Consult the ShowDeviceMessage function for the possible argument values.

Return Value:
Returns TRUE if the I/O device driver could be initialized with the requested flags; FALSE if
not.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

virtual BOOL Update(CONST CIODevice *pDevice,BOOL &bRestart)

Updates the I/O device driver with the configuration of another one and returns an
indication if a restart is required to apply the changes.
Parameters:
pDevice

Contains the pointer to another open I/O device driver those configuration should
be copied.

bRestart

In: Directs the procedure to restart the I/O device driver automatically (when
required) if set to TRUE.
Out: Indicates if a restart is required to make any changes apply (when FALSE was
specified as input value) or if a restart has taken place (when TRUE on input)

Return Value:
Returns TRUE if the I/O device driver configuration was updated successfully; FALSE if not.

virtual INT Send(CONST CByteArray &nData)

virtual INT Send(CONST CTMTransferUnit &cTMTransferUnit)

virtual INT Send(CONST CTCTransferUnit &cTCTransferUnit)

virtual INT Send(CONST CTMUnit &cTMUnit)

virtual INT Send(CONST CTCUnit &cTCUnit)

Sends the supplied data via the I/O device driver to the physical device in a non-blocking
way.

 Note:
The Send procedure used to transmit data must correspond with the flags specified during

the Initialize call i.e. the flag IODEVICE_DATASERVICE_RAW implies the use of the first
overloaded procedure, IODEVICE_DATASERVICE_TRANSFERFRAMES requires either the
second or third one to be used (depending on IODEVICE_SERVICE_TM or
IODEVICE_SERVICE_TC). The same applies for the latter two procedures that can only be
used when the IODEVICE_DATASERVICE_SOURCEPACKETS flag was specified previously.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

Parameters:
nData

Contains the data to be transmitted in a serialized format.
cTMTransferUnit

cTCTransferUnit

Supplies the data as a transfer frame.
cTMUnit

cTCUnit

Supplies the data as a source packet.

Return Value:
Returns a data identification number >= 0 if the I/O device driver could add the data to the
output buffer; -1 if not. The returned number is identical to the one provided by the
nDataID argument of the callback procedure pDataStatusProcedure specified by
Initialize(…).

virtual BOOL Receive(CByteArray &nData)

virtual BOOL Receive(CTMTransferUnit &cTMTransferUnit)

virtual BOOL Receive(CTCTransferUnit &cTCTransferUnit)

virtual BOOL Receive(CTMUnit &cTMUnit)

virtual BOOL Receive(CTCUnit &cTCUnit)

Retrieves data from the I/O device driver input buffer in a non-blocking way.

 Note:
The Receive procedure used must correspond with the flags specified during the

Initialize call (see above).
Parameters:
nData

Returns the data in a serialized format.
cTMTransferUnit

cTCTransferUnit

Retrieves the data as a transfer frame.
cTMUnit

cTCUnit

Retrieves the data as a source packet.

Return Value:
Returns TRUE if the data could be retrieved in the requested format; FALSE if not.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

virtual BOOL Clear(BOOL bAll=TRUE)

Clears the input or output buffers of the I/O device driver.
Parameters:
bAll

Indicates if all buffers should be cleared or not.
If FALSE is specified, only the output buffers are cleared when the I/O device driver
acts as a server or the input buffers when operating as a client.

Return Value:
Returns TRUE if the specified buffers could be cleared; FALSE if not.

virtual BOOL SetStatus(LPCTSTR pszStatus)

Sets the status of the current device.
Parameters:
pszStatus

Specifies the current status of the device.

 Note:
This status indication text is device specific should not be longer than 16 characters.

Return Value:
Returns TRUE if the device status could be set; FALSE if not.

virtual CString GetStatus() CONST

Gets the current status of the device.

Return Value:
Returns the current device status as a string.

virtual BOOL SetStatusIndication(UINT nStatus)

Sets the status of the device in a numerical form.
Parameters:
nStatus

Specifies the current status of the device in a numerical form.

 Note:

 The numerical status should reflect the textual status as close as possible
 See the procedure ShowDeviceStatus for all allowed values

Return Value:
Returns the TRUE if the device status could be set; FALSE if not.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

virtual UINT GetStatusIndication() CONST

Gets the status of the device in a numerical form.

Return Value:
Returns the current device status as a numerical value.

 Note:
See the procedure ShowDeviceStatus for all values that may be returned.

virtual UINT GetCapabilities() CONST

Gets the capabilities of the I/O device driver.

 Note:
This function can be used to choose the way how the I/O device driver should operate. The
flags returned are identical to those required by the Initialize function.

Return Value:
Returns the capabilities of the I/O device driver:

Flags Description

IODEVICE_TYPE_SERVER The I/O device driver can act as a server.
IODEVICE_TYPE_CLIENT The I/O device driver can operate as a

client.
IODEVICE_SERVICE_TM Telemetry data can be handled.
IODEVICE_SERVICE_TC Telecommand data can be handled.
IODEVICE_DATASERVICE_RAW Any data transfer can take place in a

serialized way.
IODEVICE_DATASERVICE_TRANSFERFRAMES Transfer frames are supported for sending

or receiving.

 Note:
See the CTMTransferUnit and

CTCFransferUnit classes for more
information.

IODEVICE_DATASERVICE_SOURCEPACKETS The data exchange can take place on the
basis of source packets.

 Note:
See the CTMUnit and CTCUnit classes for
more information.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

I/O Device Driver Capabilities (continued)

IODEVICE_PROTOCOL_PFLP The I/O device driver supports the Packet
Front-End Link Protocol (PFLP).

virtual CString GetDetails() CONST

Gets details about the I/O device driver which are displayed as a tool-tip.

Return Value:
Returns additional information about the I/O device driver as a string.

virtual INT EnumConnections(CStringArray &szComputers) CONST

virtual INT EnumConnections(CStringArray &szComputers,

CTimeTagArray &tConnectTimes,

CTimeTagArray &tLastUseTimes,

CDWordArray &cbInBytes,

CDWordArray &cbOutBytes) CONST

Returns all server/client connections currently handled by the I/O device driver.

 Note:
If the I/O device driver is configured to act as a server, this procedure returns all client
connections; when operating in client mode it enumerates only the one to the server.
Parameters:
szComputers

Contains the name of the connected peer in the format:
Peer Nameend-of-lineIP Address (Peer name and IP address separated by a ‘\n’)

tConnectTimes

Contains the time when the connection was established.
tLastUseTimes

Contains the time when the connection was used for the last time.
cbInBytes

Contains the number of KB received on the connection.
cbOutBytes

Contains the number of KB sent on the connection.

Return Value:
Returns the number of connections enumerated.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

virtual BOOL AbortConnection(LPCTSTR pszComputer,CONST CTimeTag

&tConnectTime)

Aborts the connection to the peer with the IP address pszComputer by the I/O device
driver.
Parameters:
pszComputer

Contains the IP address of the peer to which the connection should be aborted in a
dotted string format (e.g. 195.74.165.216).

tConnectTime

Specifies the establishment time of the connection to be aborted.

Return Value:
Returns TRUE if the connection was aborted successfully; FALSE if not.

virtual BOOL IsLocal() CONST

Checks if the I/O device driver is connected to a local device i.e. if the data received is
generated locally (e.g. by a simulator).

 Note:
This function is intended to be used to check for a simulator data generation device.

Return Value:
Returns TRUE if the I/O device driver is connected to a local device; FALSE if not or if the
device driver it not open.

virtual BOOL Copy(CONST CIODevice *pDevice)

Copies the I/O device driver.
Parameters:
pDevice

Contains a pointer to the I/O device driver to be copied.

Return Value:
Returns TRUE if the copy was successful; FALSE if not.

virtual BOOL Compare(CONST CIODevice *pDevice) CONST

Compares the I/O device driver with another one.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

Parameters:
pDevice

Contains a pointer to the I/O device driver to be compared with.

Return Value:
Returns TRUE if both I/O device drivers are identical (including their configuration); FALSE if
not.

virtual BOOL Map(CByteArray &nInfo) CONST

Serializes the I/O device driver.
Parameters:
nInfo

Contains the I/O device driver data in a serialized format.

Return Value:
Returns TRUE if the serialization was successful; FALSE if not.

virtual BOOL Unmap(CONST CByteArray &nInfo) CONST

De-serializes data previously serialized with the Map procedure.
Parameters:
nInfo

Contains the I/O device driver data in a serialized format.

Return Value:
Returns TRUE if the de-serialization was successful; FALSE if not.

mailto:info@binary-space.com

In der Weid 3, CH-8122 Binz
Tel: +41 44 8877987, Fax: +41 44 8877989, Email: info@binary-space.com, Web: www.binary-space.com

4. Software Prerequisites
The Microsoft® Visual Studio® 2010 or higher is required as well as the SatView™ Data
I/O Device Driver Development Kit (DDK) which is available for free for all customers of

.

5. Samples
The SatView™ Data I/O DDK contains a complete implementation of an I/O device driver
for the ENERTEC TT&C 3801 device.

mailto:info@binary-space.com

